مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی
نویسندگان
چکیده مقاله:
Accurate simulation runoff process can have a significant role in water resources management and related issues. The inherent complexity of this process makes difficult the use of physical and numerical models. In recent years, application of intelligent models is increased a powerful tool in hydrological modeling. The aim of this study was the application of the Gamma test to select the optimal combination of input variables for runoff modeling in Sofi Chay. Streamflow modeling was performed based on the optimum number of the selected variables using the artificial neural network (ANN) and Support vector machine (SVM) methods .Gamma test results showed that monthly runoff with six antecedent runoff values provide better results to predict. Runoff simulation using support vector machines and artificial neural network models also showed that the best input structure will be delayed until six to predict of next month runoff. Among to models with the same input structure, support vector machine have relatively high efficiency compared to artificial neural network .
منابع مشابه
مدلسازی مقاومت فشاری بتن غلتکی با استفاده از شبکه عصبی مصنوعی، انفیس و ماشین بردار پشتیبان
امروزه از بتن غلتکی در ساخت سدها و روسازی راهها استفاده میشود و طی سالهای اخیر استفاده از این نوع بتن به علت مزایایی چون کوتاه شدن زمان ساخت، در دسترس بودن مصالح مورد نیاز، عملکرد مناسب در نواحی سرد و عمر مفید طولانی گسترش یافته است. مهمترین خاصیت مکانیکی بتن غلتکی، مقاومت فشاری میباشد که افزایش آن میتواند عملکرد این نوع بتن را بهبود بخشد. حساسیت بتن غلتکی به اجزای تشکیلدهنده آن سبب مشک...
متن کاملمقایسه روش های شبکه عصبی و ماشین بردار پشتیبان در استخراج نقشه های کاربری و پوشش اراضی با استفاده از تصاویر لندست 8 (مطالعه موردی: حوضه صوفی چای)
تهیه نقشه کاربری و پوشش اراضی برای برنامهریزی و مدیریت منابع طبیعی امری ضروری میباشد. در این بین استفاده از دادههای سنجش از دور با توجه به ارائه اطلاعات به روز، پوشش تکراری، کمهزینه بودن در ارزیابی منابع طبیعی جایگاه خاصی دارد. لذا در این پژوهش، تصاویر لندست 8 بهعنوان داده ورودی برای تهیه نقشه کاربری اراضی در سطح 2و1 مورد استفاده قرار گرفت. در این بین، با توجه به جدید بودن این تصاویر، تصحی...
متن کاملشناسایی گردوغبار در تصاویر ماهوارهای MODIS با استفاده از روشهای ماشین بردار پشتیبان، شبکه عصبی مصنوعی و درخت تصمیمگیری
یکی از مهمترین بلایای طبیعی که طی سالیان اخیر موردتوجه قرارگرفته، پدیدهی گردوغبار است. در سالهای اخیر این پدیده در ایران ابعاد تازهای گرفته و از یک معضل محلی، به مسئلهای ملی تبدیل شده است. شناسایی و تشخیص طوفان گردوغبار اولین مرحله در بررسی و پایش آن میباشد. این تحقیق باهدف شناسایی مناطق دارای گردوغبار از تصاویر ماهوارهای، در منطقه خاورمیانه انجام گرفته است. در بررسی پدیده گردوغبار تصاویر...
متن کاملتهیه نقشه کاربری اراضی دشت عباس ایلام با استفاده از روشهای شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال
یکی از ضروریترین اطلاعات مورد نیاز مدیران و متولیان منابع طبیعی، نقشههای کاربری اراضی میباشد. در پژوهش حاضر، بهمنظور تهیة نقشة کاربری اراضی دشت عباس از دادههای رقومی سنجنده (1386)ETM+ استفاده شد. ابتدا تصویر با میانگین خطای مربعات 47/0 پیکسل تصحیح هندسی شد. جهت طبقهبندی تصویر از روشهای طبقهبندی شبکه عصبی مصنوعی، ماشین بردار پشتیبان و حداکثر احتمال استفاده شد. در نهایت، نقشة پوشش اراضی م...
متن کاملبررسی پایداری استاتیکی ولتاژ با استفاده از ماشین بردار پشتیبان و شبکه عصبی
پایداری ولتاژ یک مسئله اساسی در سیستم قدرت میباشد. در این مقاله پایداری ولتاژ از حیث استاتیکی، و کاربرد شبکه عصبی و SVM در تخمین حد پایداری و نیز پیشبینی پایداری ولتاﮊ بررسی شده است. پایداری ولتاژ در دو بخش مورد ارزیابی قرار گرفته است. در بخش اول، محاسبه حاشیه پایداری استاتیکی ولتاژ به وسیله شبکه عصبی RBF بیان میشود. مزیت روش استفاده شده، دقت بالای آن در تشخیص حاشیه پایداری ولتاژ به صورت بهن...
متن کاملبررسی پایداری استاتیکی ولتاژ با استفاده از ماشین بردار پشتیبان و شبکه عصبی
پایداری ولتاژ یک مسئله اساسی در سیستم قدرت میباشد. در این مقاله پایداری ولتاژ از حیث استاتیکی، و کاربرد شبکه عصبی و SVM در تخمین حد پایداری و نیز پیشبینی پایداری ولتاﮊ بررسی شده است. پایداری ولتاژ در دو بخش مورد ارزیابی قرار گرفته است. در بخش اول، محاسبه حاشیه پایداری استاتیکی ولتاژ به وسیله شبکه عصبی RBF بیان میشود. مزیت روش استفاده شده، دقت بالای آن در تشخیص حاشیه پایداری ولتاژ به صورت بهن...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 9 شماره 17
صفحات 57- 66
تاریخ انتشار 2018-09
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023